

Pursuant to the authority vested in the Air Resources Board by Sections 43013, 43018, 43101, 43102, 43104 and 43105 of the Health and Safety Code; and

Pursuant to the authority vested in the undersigned by Sections 39515 and 39516 of the Health and Safety Code and Executive Order G-02-003;

IT IS ORDERED AND RESOLVED: That the following compression-ignition engines and emission control systems produced by the manufacturer are certified as described below for use in off-road equipment. Production engines shall be in all material respects the same as those for which certification is granted.

MODEL YEAR	ENGINE FAMILY	DISPLACEMENT (liters)	FUEL TYPE	USEFUL LIFE (hours)					
2007	7DZXL04.8064	4.764	Diesel	8000					
	FEATURES & EMISSION		TYPICAL EQUIPMENT APPLICATION						
Direct Dies Exhaust -0	el Injection, Turbocharg Sas Recirculation, Smok Control Modul		Loaders, Tractor, Dozer, Pu Other OEM Pro-						

The engine models and codes are attached.

The following are the exhaust certification standards (STD), or family emission limit(s) (FEL) as applicable, and certification levels (CERT) for hydrocarbon (HC), oxides of nitrogen (NOx), or non-methane hydrocarbon plus oxides of nitrogen (NMHC+NOx), carbon monoxide (CO), and particulate matter (PM) in grams per kilowatt-hour (g/kW-hr), and the opacity-of-smoke certification standards and certification levels in percent (%) during acceleration (Accel), lugging (Lug), and the peak value from either mode (Peak) for this engine family (Title 13, California Code of Regulations, (13 CCR) Section 2423):

RATED	EMISSION			E		OPACITY (%)					
POWER CLASS	STANDARD CATEGORY		HC	NOx	NMHC+NOx	co	PM	ACCEL	LUG	PEAK	
75 ≤ kW < 130	Tier 3	STD	N/A	N/A	4.0	5.0	0.30	20	15	50	
		FEL		-	4.0	-	0.30	-	-	-	
		CERT	-	-	3.7	0.6	0.08	10	0	19	

BE IT FURTHER RESOLVED: That the family emission limit(s) (FEL) is an emission level declared by the manufacturer for use in any averaging, banking and trading program and in lieu of an emission standard for certification. It serves as the applicable emission standard for determining compliance of any engine within this engine family under 13 CCR Sections 2423 and 2427.

BE IT FURTHER RESOLVED: That for the listed engine models, the manufacturer has submitted the information and materials to demonstrate certification compliance with 13 CCR Section 2424 (emission control labels), and 13 CCR Sections 2425 and 2426 (emission control system warranty).

Engines certified under this Executive Order must conform to all applicable California emission regulations.

This Executive Order is only granted to the engine family and model-year listed above. Engines in this family that are produced for any other model-year are not covered by this Executive Order.

Executed at El Monte, California on this

nette Hebert, Chief

Mobile Source Operations Division

day of February 2007.

Engine Model Summary Form

Manufacturer: DEJTZ AG

Engine category: Norroad CI

EPA Engine Family: 70ZXL04.8064

Mir Family Name: TCD2013L04 2V 75-130KW TIERS

Process Code: New Submission

A Hachment E0#U-12-013-0207

22	SE SE								<u></u>														
8.Fuel Rate: 9.Emission Control (Ibs/hr)@peak torque Device Per SAE J1930	DDI, TC, CAC, SA	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	DDI, TC, CAC,	
8.Fuel Hate: (lbs/hr)@peak torque	55.8	55.8	25.8	58.3	53.3	53.3	53.3	53.3	51.5	51.5	51.5	51.5	50.1	50.1	50.1	50.1	48.3	48.3	48.3	48.3	47.2	45.1	
mm/stroke@peak torque	157	157	157	2	장	150	55	150	145	145	145	1 5	14	141	141	141	136	136	136	136	133	127	
6.Torque (@ RPM (SEA Gross)	494.1@1600	494.1@1600	494.1@1600	494.1@1600	474.2@1600	474.2@1600	474.2@1600	474.2@1600	455.8@1600	455.8@1600	455.8@1600	455.8@1600	437.3@1600	437.3@1600	437.3@1600	437.3@1600	419.6@1600	419.6@1600	419.6@1600	419.6@1600	405.6@1600	398.2@1600	
(lbs/hr) @ peak HP (for desels only)	6.69	6.99	66.3	66.7	65.9	65.5	64.4	62.2	63.4	62.6	62.5	60.4	59.8	58.7	58.3	56.9	56.2	55.2	55.1	45.3	51.1	49.3	
mrrystroke @ peak HP (for diesel only)	131	137	4	150	81	<u>\$</u>	8	140	124	128 821	\$	136		120 ·	7	128	110	113	118	121	115		
3.BHP@RPM (SAE Gross)	/172.9@2300	(¹⁵) 172.9@2200	172.9@2200	171.6@2000	168.9@2300	167.6@2200	166.2@2100	163.6@2000	160.9@2300	159.5@2200	158.2@2100	155.5@2000	151.5@2300	150.1@2200	148.8@2100	147.5@2000	140.8@2300	139.4@2200	138.1@2100	136.7@2000	127.3@2000	,122@2000	di
2.Engine Model	TCD2013L04	TCD2013L04		TCD2013L04	TCD2013L04	TCD2013L04	TCD2013L04	TCD2013L04	TCD2013L04	TCD2013L04	TCD2013L04	TCD2013L04	TCD2013L04	TCD2013L04									
1.Engine Code	C3U129	C3U128A	ය U128 B	C3U1128	C3U1126	C3UI125	C3U1124	C3UI122	C3U1120	C3UI119	C3UH18	C3UI116	C3U113	C3U1112	G3U111	C3UI110	G3U1105	G3U1104	G3U1103	G3UI102	C3UI95	C3UI91	